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Micromanipulation of sonoluminescing bubbles is achieved by generating a complex sound field consisting
of spatially distributed modes of higher harmonics of a basic driving frequency. Bubbles can be manipulated in
space and shifted to any desired spot. The interaction with the complex sound field also allows for specification
of the violence of a bubble collapse.
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I. INTRODUCTION

During single bubble sonoluminescence(SBSL) a bubble
levitated in a fluid is oscillating violently in response to a
high amplitude driving ultrasound field and emitting short
light pulses at collapse time[1–3]. During this process me-
chanical(acoustic) energy is focused near the bubble driving
it to emit a broad spectrum of photons with peak energies
exceeding 3 eV. Compared to the mechanical work exerted
on a single molecule by the driving circuitry, this represents
an energy amplification of 13 orders of magnitude. Experi-
ments and numerical work stimulated by speculations,
whether it may be possible to further increase the violence of
the collapse with the help of a modified sound field, have
been used[4–12]. Two concepts have been reported: One
deals with the addition of higher harmonics with a certain
adjustable phase difference of a basic driving frequency
[4–10], the other with the addition of pulsed ultrasound
[6,11,12]. In most reports a severalfold increase of the emit-
ted light intensity has been observed under certain experi-
mental conditions and chosen driving parameter values. In
this investigation we report on the effects of multifrequency
driving of sonoluminescing bubbles under varying driving
parameters, such as number of harmonics, phase, and ampli-
tude. It is shown that parameter changes cannot only control
the intensity of the collapse but also allow for spatial micro-
manipulation of the levitation spot of the bubble. Microma-
nipulation is useful in further attempts to target the bubble
into the very center of a converging ultrasonic pulse[6,12] or
self-generated reflected shock wave. In Ref.[13] it has been
shown that during SBSL bubble collapse a shock wave is
emitted from the bubble into the liquid. The side walls of the
SBSL resonator cell reflect the arriving pressure pulse and
aid to refocus it to a spot whereby the pulse increases its
amplitude generating a shock wave. As this reflected shock
may not hit the bubble at its minimal focus, spatial manipu-
lations to the bubble could be applied to achieve spatial co-
incidence. Otherwise, spatial dislocations[6] may result as a
consequence of a nonisotropic pressure pulse.

II. NUMERICAL MODEL

In the experiment[1] a single bubble is levitated in a
standing wave sound field set up in a water column. As the
bubble interacts with the sound multiple forces act on it. It is

levitated with the help of the primary Bjerknes force

FB = − kVstd = pesr,z,tdlt s1d

acting on the oscillating volumeVstd of the bubble. WhenFB

is large enough to overcome the buoyancy force

Fg = ksrl − rgdVstds9.81dlt, s2d

with rl, rg, the respective liquid and bubble gas densities, the
bubble is attracted to a fixed position in the fluid. The sound
pressurepesr ,z,td is a standing wave with cylindrical coor-
dinates r, z. At moderate driving with frequencies below
their linear resonance, a bubble is attracted towards the pres-
sure antinode to a position slightly above the pressure antin-
ode, at which the buoyant and the Bjerknes force balance.
Figure 1 visualizes the behavior of a bubble of 4mm ambi-
ent radius in a one-dimensionals1Dd sound field. Omitting
the r dependence, the sound field describing our experimen-
tal setupf5g is approximated as

pesz,td = pe,1 cossv1tdcossk1zd, s3d

with pe,1=1.4 bars,v1=2pf, f =23.4 kHz, andk1=2p /2l,
l being the wavelength in water. The special value of the

FIG. 1. Driving pressure, buoyancy force, Bjerknes force, and
minimal radius at collapse of a bubble with a fixed radius of 4mm
oscillating in a vertical 1D standing wave field as a function of
position using Eqs.(1)–(5).
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wave numberk1 is reflecting the experimentally observed
mode. In Fig. 1 it is seen that when the bubble is posi-
tioned near the center of the 1D sound field, where the
sum of buoyancy and Bjerknes forces vanishes, the buoy-
ancy is largest and the collapse radius is smallest, as the
bubble sees the increased driving pressure at the center of
the standing wave and responds with highly nonlinear os-
cillations. The situation complicates when multifrequency
driving is employed.

The Gilmore model[14] describing the radial motion of
an argon bubble in water is integrated numerically,
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Ṙ

3C
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Here R is the bubble radius;C, r, and p are the speed of
sound in the liquid, its density, and the pressure at the bubble
wall, respectively.H is the enthalpy of the liquid. Parameters
were set to c0=1483 m/s, s=0.0725 N/m, and m
=0.001 Ns/m2. a=R0/8.86 is a hard-core van der Waals
term [15] and k a polytropic exponent. Its value is set be-
tween 1 (=isothermal) and 5/3 (adiabatic collapse) for a
monoatomic gas such as argon[16] according to an instan-
taneous Peclet number reflecting the thermal conduction at
the involved time scales. The Tait equation is taken as the
equation of state for water usingn=7.025,B=3046 bars[13]
as parameters.

The pressure at infinity isp`=p0+pesz,td, with the ambi-
ent pressurep0 and the spatially dependent driving pressure
field

FIG. 2. Gray scale diagrams of the sum of Bjerknes and buoyancy forces on a bubble driven by a two-frequency sound field consisting
of first and second harmonic. Stable and unstable positions of the bubble are shown as a function of temporal phase difference between both
driving components. The driving pressure of the first harmonicsf =23.4 kHzd is 1.35 bars and the pressure of the second harmonic is
0.371 bars. The phase differences of the spatial modes are(a–c) 0°, −45° and −90°.(d) Minimal radii at collapse of the data in(a–c) (top
to bottom). Results of the bottom stability lines have filled symbols; upper lines and islands are opaque.
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pesz,td = pe,1 cossv1tdcossk1zd + pe,2

3cossv2t + ftdcossk2z+ fzd. s6d

The values for the first contribution, the first harmonic, fol-
low Eq. s3d. The second contribution for the added harmonic
hasv2=2pnf, n=2,3, . . ., and thewave numberk2=2p /l2,
l2 being the wavelength. A spatial phase shiftfz and a tem-
poral phase shiftft are introduced in the definition for the
added harmonic to attribute for a spatial shift in the phase of
the standing wave as observed in experiments and to use the
temporal phase as a parameter.

III. NUMERICAL RESULTS

A. General remarks

In the numerical examples Secs. III B–III E an argon
bubble [17] of 4 mm fixed ambient radius is used unless
otherwise noted. The main driving frequency(first harmonic)
is 23.4 kHz, the same as in our experiments[5,10,13]. The
bubble model[Eq. (4)] is integrated using a specified driving
form consisting of the sum of two frequencies. The bubble is
placed in z space(parallel to the gravity vector) and the

resulting Bjerknes(1) and buoyancy(2) forces are calcu-
lated.

Gray scale diagrams are shown that encode the sum of
both forces. More negative forces are encoded darker. Con-
tour lines are drawn in the gray scale diagram denoting that
the sum of forces is zero. Small lines attached to the zero-
force lines point the direction of negative forces. Positive
forces are shifting the bubble upwards in space(positivez).
The stable positions are shown by filled symbols on the zero-
force lines. In the calculations with a fixed ambient radius a
high energetic collapse is expressed by a small minimum
radius.

In Sec. III F calculations for a bubble in degassed water of
a fixed concentration of dissolved air are presented. The
number and type of molecules in the bubble(~ ambient ra-
dius) adjust themselves along with the position of the bubble
in the sound field, which is also modeled.

B. Dependence on spatial phase

In Fig. 2 examples of biharmonic drivings utilizing a first
and second harmonic are shown. As a function of the tem-
poral phase difference the sum of forces and zero-force lines

FIG. 3. Bjerknes and buoyancy forces on a bubble driven by a two-frequency sound field consisting of first and second harmonic. Stable
and unstable positions of the bubble are shown as a function of temporal phase difference between both driving components. The driving
pressure of the first harmonicsf =23.4 kHzd is 1.4 bars and the pressure of the second harmonicsf =46.8 kHzd is (from top to bottom) (a)
0.07, (b) 0.14, (c) 0.35, (d) 0.7 bars. The phase difference of the spatial modes is −90°.

MICROMANIPULATION OF SONOLUMINESCING BUBBLES PHYSICAL REVIEW E69, 056304(2004)

056304-3



are shown. Stable positions of the bubble are denoted by
filled symbols on the zero-force lines. Figures 2(a)–2(c) have
different values of the spatial phase[Eq. (6)].

Multiple zero-force lines are seen. Coexisting spatially
stable and also unstable regions can be determined as well as
islands with stable/unstable boundaries. They originate in
saddle-node bifurcation points. On the unstable line the sum
of Bjerknes and buoyancy forces vanishes, but slight pertur-
bations of the position move the bubble to one of the two
nearest stable positions. The figures are almost symmetric
around thez=0 line; however, the only symmetry breaking
effect present is the buoyancy force. Large spatial oscilla-
tions by varying the temporal phase difference are seen for
all spatial phase differences between modes. Figure 2(d)
shows the minimal radii during collapse for the different pa-
rameter values of Figs. 2(a)–2(c). Large fluctuation are seen.
At some values of the temporal phase difference, the bubble
hardly oscillates, as the radius during collapse almost equals
the ambient radius. However, a broad plateau exists in the
range of values of the temporal phase, where the bubble is
oscillating violently. The absolute minimum of the collapse
radius is almost at the same temporal phase for all spatial
phases.

C. Dependence on amplitudes

The positional stability lines of a bubble in a bimodal
driving field depend on the amplitude of the second added
frequency. Figure 3 shows the results of the sum of forces on
a 4 mm bubble and the stability lines at different pressures.
While the amplitude of the first harmonic is fixed at 1.4 bars,
the pressure of the second harmonic is varied in four steps
from 0.07 to 0.7 bars. The large oscillations of the stable
bubble position as a function of the temporal phase are seen.
Their amplitudes increase with increasing second harmonic

driving pressure. At 0.35 bars pressure the zero-force lines
surround small islands in the force landscape. Also, lines
showing spatially unstable bubble behavior are seen. The
complexity increases at 0.7 bars where multiple coexisting
stability lines are present with unstable connections. A
bubble can oscillate stably along the stability lines marked
by filled symbols and would sometimes jump by a discrete
amount if the temporal phase is changed. Figure 4 shows
results for a bubble of 4.25mm ambient radius. Different
collapse radii as a function of position and phase difference
are shown together with the stability lines. It is seen that the
collapse radius changes along the stability lines. Bjerknes
and buoyancy forces keep the bubble away from regions
with a very high energetic collapse.

In the multiple stability regime the different bubble posi-
tions are associated with vastly different dynamics. While at
some points the bubble hardly oscillates others show enor-
mous compression ratios needed for sonoluminescence. Also
shown are parametrically(surface) unstable bubbles[18].
Bubbles driven at these phases/positions will show a dancing
behavior with less radial compression.

D. Very high frequency modes

When the added harmonic’s frequency is a very high mul-
tiple of the main driving frequency, it is seen that the bubble
still responds to relative phase changes between both driving

FIG. 4. Minimum radius at bubble collapse. The difference of
the collapse radius to a global minimum is encoded by a logarith-
mic gray scale. Same data as in Fig. 3(d) except the ambient radius
that is 4.25mm. The vanishing sum of Bjerknes and buoyancy
forces defines the stability lines of the bubble. Parametrically un-
stable bubbles have opaque symbols.

FIG. 5. Bjerknes forces and equilibrium positions as function of
temporal phase shift between the two driving components of a
bubble undergoing very high frequency harmonicf +nf driving,
f =23.4 kHz:(a) n=10, (b) n=20, (c) n=40. The driving amplitudes
are 1.4 bars forf and 0.07 bars for thenf component.
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components(Fig. 5). The second frequency is changed asnf,
n=10, 20, 40;f =23.4 kHz. Figure 5 shows the Bjerknes and
buoyancy forces and the stable positions of a bubble with
ambient radius of 4mm as a function of temporal phase dif-
ference. The spatial phase shift is 0°. Figure 5(a) corresponds
to Fig. 2(a) where two almost symmetric stability lines exist,
whose symmetry is broken due to buoyancy. With increasing
order of the added harmonic a change in response is seen: the
phase interval during which the position changes shrinks at
high frequency. When the 40f harmonic is added to the driv-
ing, the bubble almost digitally switches between an upper
and lower position. This may be attributed to the increased
interaction of the harmonic with the afterbounce frequency
which is almost equal to the linear resonance frequency of
the 4mm bubble[19]. The radial dynamics, i.e., the mini-
mum radius at collapse is not affected by adding very high
harmonics.

E. Running waves

The position of a bubble in a sound field is not only de-
termined by standing waves or spatial modes but also by the
eventually present running waves. In Ref.[20] higher har-
monics of the driving have been measured; some of them
behaved like running waves with no apparent spatial mode.
In Fig. 6 an upward pointing running wave of second har-
monic frequencysp=0.07 barsd is added to the main driving
componentsp=1.4 barsd which has a fixed spatial mode[Eq.
(3)]. As a function of temporal phase difference large oscil-
lations are seen. Also a region showing a bistable behavior
with an unstable branch of stability lines is seen(saddle-node
bifurcation). The bottom part of Fig. 6 shows that the mini-
mum radius at collapse is oscillating near the minimum ra-
dius of a 1f driving with the same power. The 1f driven
bubble is located 84mm above the antinode where the sound
pressure is 1.2 Pa less than the maximum.

In Fig. 7 the dependence of the positional changes on the
frequency of the running wave is seen. Bjerknes force, buoy-
ancy force, and stability lines are shown for added frequen-
cies up to the tenth harmonic. Generally speaking, the am-
plitudes of the spatial variations decrease with increasing
frequency. The bistable regions, however, increase in the pa-
rameter space of the spatial phase.

F. Diffusion and dissociation

The results so far are calculated for a bubble with a fixed
equilibrium radius. In experimental situations, where a

FIG. 6. Stable and unstable equilibrium positions of a bubble
undergoing 2f drivingf2=2f1 as a function of temporal phase dif-
ference. The second harmonic is a running wave(no spatial mode).
The pressures arep1=1.4 bars andp2=0.07 bars. Top: position,
bottom: minimum radius at collapse time. Dashed line denotes
minimum radius with same power 1f driving; the lower line is van
der Waals hard core.

FIG. 7. Stable(filled symbols) and unstable equilibrium posi-
tions of a bubble driven by a two-frequency signal as a function of
temporal phase difference. The first harmonic is a standing wave
mode. The addednth harmonic is a running wave(no spatial mode).
The sum of Bjerknes and buoyancy forces is encoded by a gray
scale. The pressures arep1=1.4 bars andpn=0.14 bars the frequen-
cies are;f1=23.4 kHz, fn=nf1, n=2,5,7,10(a–d).
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bubble is levitated in water in which air molecules are dis-
solved with a fixed saturation level, the number of molecules
and their individual partial pressures in the bubble will dy-
namically adjust when other parameters are changed. The
minimal radius, which is a measure for the intensity of a
fixed sized bubble’s collapse, is now also a function of the
dynamics. To measure the intensity of a collapse, the tem-
perature within the bubble is calculated.

The bubble model is extended[21] to include diffusion of
dissolved gases in water(N2, O2, Ar) [22], chemical disso-
ciation of molecules[16,23], continuous adjustment of the
van der Waals hard core, thermal diffusion by smooth
isothermal/adiabatic switching during the compression/
expansion phase[16], and 1D spatial bubble translation with
variable damping according to the Reynold’s number and
parametric stability[18]. During the calculations a bubble is
allowed to dynamically evolve over many cycles into a dif-
fusional and spatial equilibrium starting from specified initial
conditions.

In Fig. 8 the behavior of a bubble in water of a fixed
saturation level of 30% is shown. The dashed line shows the
values obtained for single-frequency driving at 1.3 bars, the
maximal driving pressure above which the bubble is para-
metrically unstable. The values for the parametric stability
are shown in Fig. 8(e). Values exceeding 1 denote an un-
stable bubble where surface oscillations lead to a breakup.
As seen in experiments[1,13], the bubble tends to “dance,”

whereby it cycles through a process set up by rectified dif-
fusion and subsequent microbubble splitoff. In Fig. 8, trans-
parent symbols denote results for cycling bubbles just cross-
ing the stabilitys=1d line.

Calculations are made for a biharmonic driving of first
and second harmonic with phase differences from 0 to 180°:
Below 50° and from 160°−180° phase difference a bubble
dissolves on a slow time scale. From 50°−80° the bubble is
relatively cold [Fig. 8(b)]. It is growing by rectified diffu-
sion, is not able to dissociate much of its contents, and con-
tains mostly air. The growth is limited by the parametric
stability threshold. At 90° chemical dissociation of N2 and
O2 sets in as seen in the decrease of the ambient radius[Fig.
8(c)]. The two symbols show results for a(diffusively un-
stable) argon bubble developing into the final bubble con-
taining some gas mixture. Bubbles between 110° and 160°
have a hot collapse phase, consist solely of argon, and are
stable, with the exception of a small island around 125°. The
hottest stable bubble is produced by a phase difference of
120°, where it reaches 21 600 K(compare to 19 200 K for
the monofrequent driving). The bubble driven using a phase
difference in this regime has a consistently hotter collapse as
when using 1f driving. Also, the 2f-driven bubble is bigger
during collapse, leading to a larger radiating volume. These
numerical results can be compared to the experimental re-
sults in Ref.[5], where the spatial translations, excess light
emission, and parametric instabilities are also published.

A further extension of the model[21] to include water
vapor evaporation and condensation[24,25] is leading to the
results of Fig. 9. The amplitude of the monofrequent and the
relative phase of the bifrequent driving signal have been cho-

FIG. 8. Changes of bubble behavior when driven by a bihar-
monic sf +2fd signal. The equilibrium radius is allowed to dynami-
cally adjust using a model for diffusion and dissociation of dis-
solved air in the water. The saturation level is set to 30%. The
pressures arep1=1.24 bars andp2=0.29 bars, the frequencies are
f1=23.4 kHz and its second harmonic. Shown are(top to bottom)
(a) bubble position,(b) temperature at main collapse,(c) ambient
radius,(d) minimum radius at collapse,(e) parametric stability as a
function of the phase difference between driving components. Para-
metrically stable bubbles are shown with opaque circles. The
dashed lines show results for single-frequency forcing withp
=1.3 bars, which is the maximal driving pressure for a diffusionally
and parametrically stable bubble at this saturation level.

FIG. 9. Time series of bubble dynamics: Comparison between
single-frequency(dashed line) and biharmonic(straight line) driv-
ing of a bubble. The results represent a parametrically, diffusionally,
and translationally stable bubble with maximum driving. The same
parameters as in Fig. 8 have been used, except the single-frequency
driving pressure that is 1.28 bars. The phase difference of the bi-
harmonic driving is 112°. The bubble model includes evaporation
and condensation of water molecules. Shown are the temperature,
ambient radius, bubble wall radius, and driving pressure as a func-
tion of time.
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sen, such that maximum temperature at collapse is attained,
whereby maintaining diffusional, translational, and paramet-
ric stability. The maximum temperatures are higher than in
the previous calculations, an effect that is due to the larger
extent of the bubble’s maximum radius obviously compen-
sating the temperature lowering effect of a smaller polytropic
exponent of the bubble’s interior at collapse. Again, the bi-
harmonic driving produces a hotter bubble(23 000 K vs
20 000 K) with a larger radius at collapse(radiating volume)
(0.61mm vs 0.57mm). The temperature pulse duration is
slightly longer for the biharmonic driving.

IV. DISCUSSION

Biharmonic drivings of bubbles show a variety of effects.
While the bubble’s own nonlinearity interacts with the more
complex sound field, as compared to single-frequency driv-
ing, changes in cavitation and sonoluminescence intensity
are observed. The position of the bubble adjusts itself in the
sound field, where the sum of the Bjerknes force and the
buoyancy force vanishes. The effects depend on the adjust-
ment of the relative phases between the two-frequency com-
ponents of the driving signal. While the spatial modes are
more or less fixed with a given experimental setup, the tem-
poral phase difference between two harmonics can be easily
adjusted. By varying this difference the positional changes of
the bubble as well as its collapse intensity are controllable.
The dependence on a number of parameters has been shown.
By increasing the amplitude of the added harmonic, complex
lines appear in the levitation space as a function of temporal
phase difference. They identify spots where a bubble can be
stably positioned. Unstable zero-force lines appear, where
the sum of forces is negative but where small disturbances
make the bubble visit other stable regions. Multiple stability
lines appear showing that a bubble can be positioned in more
than one spot in this sound field. The stable and unstable
lines are connected by saddle-node bifurcation points. Also
disconnected islands appear showing that discrete jumping of
bubbles to different spots in a levitation cell is possible.

By varying the spatial phase between the modes(standing
waves) in a one-dimensional levitation setup, it is seen that,
as a function of the temporal phase, different levitation lines
appear. Regardless of the spatial phase, the most energetic
collapse is around 115° of the temporal phase difference. The
least energetic collapses for the different spatial phase shifts
are at different values of the temporal phase shifts. Position
shifts are observed for all adjustments of the spatial phase
difference of two modes.

All calculations for 4mm ambient radius show results for
a positionally and parametrically stable bubble. As the pa-
rameter space for sonoluminescence[26] requires the water
to be degassed, the low energetic collapses observed in the
diagrams will probably make a bubble disappear due to dif-
fusion [7]. The diffusion will change the ambient radius of
the bubbles at different drivings. At higher gas levels the
ambient radius of a bubble might grow to an extent, where
the bubble will become unstable to surface mode oscilla-
tions. In an experimental situation one has to adjust the am-
bient gas concentration in order to get a stable bubble of a
certain radius. A more complex model also allowing for dif-
fusional changes in the number and type of molecules in a
bubble is integrated. These calculations for a bubble in de-
gassed water with a fixed concentration of dissolved air show
that the control of the dynamics allows for higher or lesser
temperatures at collapse or also removal of bubbles. Sonolu-
minescing bubbles can be levitated at specified spots in the
cell by micromanipulation due to biharmonic drivings. Tar-
geting shock waves to drive a bubble may be feasible with
the method described here.

Biharmonic excitations might be of use in attempts to
control cavitation. By careful choice of phase differences a
violent collapse can also be inhibited. The injection of a
phase stabilized harmonic can be used for the generation of a
multibubble cavitation system, where the destruction of
streamer patterns is possible to reduce metal abrasion and to
enhance overall cleaning capabilities of acoustic cavitation.
Inertial bubble growth of microbubbles could be controlled
by the use of an adapted biharmonic signal.

V. CONCLUSION

We have shown the effects on spatial and temporal bubble
dynamics when a bubble is driven in a biharmonic sound
field. The parameter dependences include amplitudes of
higher harmonics, spatial and temporal phase, standing
waves/modes and running waves, and the effects of very
high harmonics. The effects of gas diffusion through the
bubble wall, chemical dissociation of gas species, and water
vapor under parametrical and spatial stability conditions
have been shown. The results may serve as a tool for the
experimental control and micromanipulation of sonolumi-
nescing bubbles and multibubble cavitation.
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