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Micromanipulation of sonoluminescing bubbles
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Micromanipulation of sonoluminescing bubbles is achieved by generating a complex sound field consisting
of spatially distributed modes of higher harmonics of a basic driving frequency. Bubbles can be manipulated in
space and shifted to any desired spot. The interaction with the complex sound field also allows for specification
of the violence of a bubble collapse.
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[. INTRODUCTION levitated with the help of the primary Bjerknes force
During single bubble sonoluminescen@&@BSL) a bubble Fg=—(V(t) V pa(r,z,t)) (1)

levitated in a fluid is oscillating violently in response to a . o
high amplitude driving ultrasound field and emitting short 2Cting on the oscillating volume(t) of the bubble. Wheifrg

light pulses at collapse timgl—3]. During this process me- IS large enough to overcome the buoyancy force
chanical(acoustig energy is focused near the bubble driving - _

it to emit a broad spectrum of photons with peak energies Fo=((m = pyV(D(O.8D):, @
exceeding 3 eV. Compared to the mechanical work exertedith p;, py, the respective liquid and bubble gas densities, the
on a single molecule by the driving circuitry, this representsbubble is attracted to a fixed position in the fluid. The sound
an energy amplification of 13 orders of magnitude. Experi-pressurepg(r,z,t) is a standing wave with cylindrical coor-
ments and numerical work stimulated by speculationsdinatesr, z. At moderate driving with frequencies below
whether it may be possible to further increase the violence otheir linear resonance, a bubble is attracted towards the pres-
the collapse with the help of a modified sound field, havesure antinode to a position slightly above the pressure antin-
been used4-12. Two concepts have been reported: Oneode, at which the buoyant and the Bjerknes force balance.
deals with the addition of higher harmonics with a certainFigure 1 visualizes the behavior of a bubble ofch ambi-
adjustable phase difference of a basic driving frequencynt radius in a one-dimensionélD) sound field. Omitting
[4-1Q, the other with the addition of pulsed ultrasoundther dependence, the sound field describing our experimen-
[6,11,13. In most reports a severalfold increase of the emit-tal setup[5] is approximated as

ted light intensity has been observed under certain experi-

mental conditions and chosen driving parameter values. In Pe(Z,1) = Py Codwyt)cosks2), 3
thi.s.investigation we report on the effects of mul.tifrequ.encywith Pe1=1.4 bars,w,=27f, f=23.4 kHz, andk,=2m/2\,
driving of sonoluminescing bubbles under varying driving \ peing the wavelength in water. The special value of the
parameters, such as number of harmonics, phase, and ampli-
tude. It is shown that parameter changes cannot only control_ 5
the intensity of the collapse but also allow for spatial micro-
manipulation of the levitation spot of the bubble. Microma-
nipulation is useful in further attempts to target the bubble
into the very center of a converging ultrasonic pUygd2] or
self-generated reflected shock wave. In R&8] it has been
shown that during SBSL bubble collapse a shock wave is
emitted from the bubble into the liquid. The side walls of the
SBSL resonator cell reflect the arriving pressure pulse andZ so
aid to refocus it to a spot whereby the pulse increases its'g 0
amplitude generating a shock wave. As this reflected shock%
may not hit the bubble at its minimal focus, spatial manipu- & "9
lations to the bubble could be applied to achieve spatial co-
incidence. Otherwise, spatial dislocatidie$ may result as a
consequence of a nonisotropic pressure pulse.
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Il. NUMERICAL MODEL - _
FIG. 1. Driving pressure, buoyancy force, Bjerknes force, and

In the experimenfl] a single bubble is levitated in a minimal radius at collapse of a bubble with a fixed radius gim
standing wave sound field set up in a water column. As thescillating in a vertical 1D standing wave field as a function of
bubble interacts with the sound multiple forces act on it. It isposition using Eqs(1)~(5).
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FIG. 2. Gray scale diagrams of the sum of Bjerknes and buoyancy forces on a bubble driven by a two-frequency sound field consisting
of first and second harmonic. Stable and unstable positions of the bubble are shown as a function of temporal phase difference between both
driving components. The driving pressure of the first harmdnie23.4 kH2 is 1.35 bars and the pressure of the second harmonic is
0.371 bars. The phase differences of the spatial modeg@ace0°, —45° and -90°(d) Minimal radii at collapse of the data ifa—¢ (top
to bottor). Results of the bottom stability lines have filled symbols; upper lines and islands are opaque.

wave numbelk, is reflecting the experimentally observed dp (p(R I'Q) N B)(n—l)/Zn
mode. In Fig. 1 it is seen that when the bubble is posi- C=c|z= \/: =Col ————— :
tioned near the center of the 1D sound field, where the dp =R Po+B

sum of buoyancy and Bjerknes forces vanishes, the buoy-

ancy is largest and the collapse radius is smallest, as the . 20 Rg—a?’ 20 Adu-

bubble sees the increased driving pressure at the center of P(RR)={po+ % RR-a3/ R =R (5)
the standing wave and responds with highly nonlinear os-

cillations. The situation complicates when multifrequencyHere R is the bubble radiusC, p, andp are the speed of

driving is employed. sound in the liquid, its density, and the pressure at the bubble
The Gilmore mode[14] describing the radial motion of wall, respectivelyH is the enthalpy of the liquid. Parameters
an argon bubble in water is integrated numerically, were set to ¢p=1483 m/s, 0=0.0725 N/m, and u

=0.001 Ns/m. a=R,/8.86 is a hard-core van der Waals
term [15] and « a polytropic exponent. Its value is set be-
( R) ) 3( R)- ( R) ( R)RdH tween 1 (=isothermal and 5/3 (adiabatic collapsefor a
1-—|RR+=({1-— |RP={1+= |H+|1-= | =—, monoatomic gas such as argfi6] according to an instan-
C 2 3C c C/Cdt taneous Peclet number reflecting the thermal conduction at
(4) the involved time scales. The Tait equation is taken as the
equation of state for water usimg=7.025,B=3046 barg13]
as parameters.

o(R) N The pressure at infinity ip.,=pg+pe(z,t), with the ambi-
H :f p~tdp, p+B - {ﬁ} , ent pressurg, and the spatially dependent driving pressure
p PotB (o field

056304-2



MICROMANIPULATION OF SONOLUMINESCING BUBBLES PHYSICAL REVIEW B9, 056304(2004)

100.0

50.0

[Nu] eo104
z [mm]
[Nu] 221404

—50.0

—100.0

(a) 0 120 240 360 480 600 720 0 120 240 360 480 600 720
Phase [deg] Phase [deg] (c)

1000.0

[Nu] @0104
[Nu] @104

—2000.0

(b) 0 120 240 360 480 600 720 0 120 240 360 480 600 720 (d)
Phase [deg] Phase [degq]

FIG. 3. Bjerknes and buoyancy forces on a bubble driven by a two-frequency sound field consisting of first and second harmonic. Stable
and unstable positions of the bubble are shown as a function of temporal phase difference between both driving components. The driving
pressure of the first harmoni{¢=23.4 kH2 is 1.4 bars and the pressure of the second harmdrid6.8 kH2 is (from top to bottom (a)

0.07,(b) 0.14,(c) 0.35,(d) 0.7 bars. The phase difference of the spatial modes is —90°.

Pe(Z,1) = Pe 1 O w;t)COLK,Z) + Pe o resulting Bjerkneg1) and buoyancy(2) forces are calcu-
' ' lated.
X cog wyt + r)cogkz + ). © Gray scale diagrams are shown that encode the sum of

The values for the first contribution, the first harmonic, fol- both forces. More negative forces are encoded darker. Con-

low Eq. (3). The second contribution for the added harmonictour lines are drawn in the gray scale diagram denoting that
hasw,=2mnf, n=2,3,..., and thevave numbek,=27/\,, ~ the sum of forces is zero. Small lines attached to the zero-
\, being the wavelength. A spatial phase skiftand a tem-  force lines point the direction of negative forces. Positive
poral phase shifty, are introduced in the definition for the forces are shifting the bubble upwards in spgoesitive ).

added harmonic to attribute for a spatial shift in the phase of he stable positions are shown by filled symbols on the zero-

the standing wave as observed in experiments and to use tﬁ@rce lines. In the calculations with a fixed ambient radius a
temporal phase as a parameter. high energetic collapse is expressed by a small minimum

radius.

In Sec. lll F calculations for a bubble in degassed water of
a fixed concentration of dissolved air are presented. The
number and type of molecules in the bublpleambient ra-
A. General remarks dius) adjust themselves along with the position of the bubble

In the numerical examples Secs. Il B-Ill E an argon N the sound field, which is also modeled.
bubble [17] of 4 um fixed ambient radius is used unless
otherwise noted. The main driving frequen(yst harmonig
is 23.4 kHz, the same as in our experimefisl0,13. The
bubble mode[Eq. (4)] is integrated using a specified driving  In Fig. 2 examples of biharmonic drivings utilizing a first
form consisting of the sum of two frequencies. The bubble isand second harmonic are shown. As a function of the tem-
placed inz space(parallel to the gravity vectgrand the poral phase difference the sum of forces and zero-force lines

Ill. NUMERICAL RESULTS

B. Dependence on spatial phase
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FIG. 4. Minimum radius at bubble collapse. The difference of

the collapse radius to a global minimum is encoded by a logarith- z |
mic gray scale. Same data as in Figd)3except the ambient radius — !
that is 4.25um. The vanishing sum of Bjerknes and buoyancy é 0
forces defines the stability lines of the bubble. Parametrically un-
stable bubbles have opaque symbols. -
-2

1

are shown. Stable positions of the bubble are denoted by (g ©° 128 20 Phos3e6C[’de | <t =l

filled symbols on the zero-force lines. Figurga)22(c) have 2

different values of the spatial phafeq. (6)]. . A i .
Multiple zero-force lines are seen. Coexisting spatially FIG. 5. Bjerknes forces and equilibrium positions as function of

stable and also unstable regions can be determined as well éesrgporal phase shift between the two driving components of a
. pubble undergoing very high frequency harmofriienf driving,

ISI%Z?S Wléh ts).t]:’;lble/gnstab!et bogn(iﬁnes' -trht?Iy lprlgl[?]ate M-23.4 kHz:(a) n=10, (b) n=20, (c) n=40. The driving amplitudes
saddle-node bifurcation points. On the unstabl€ in€ the SUq 3 4 4y fof and 0.07 bars for thaf component.

of Bjerknes and buoyancy forces vanishes, but slight pertur-

bations of the position move the bubble to one of the two . . .
nearest stable positions. The figures are almost symmetr/1Ving pressure. At 0.35 bars pressure the zero-force lines
around thez=0 line; however, the only symmetry breaking surround small islands in the force landscape. Also, lines

effect present is the buoyancy force. Large spatial oscillaShowing spatially unstable bubble behavior are seen. The

tions by varying the temporal phase difference are seen fggomplexity increases at 0.7 bars where multiple coexisting

all spatial phase differences between modes. Figut® 2 stability lines are present with unstable connections. A
shows the minimal radii during collapse for the different pa_bubble can oscillate stably along the stability lines marked

rameter values of Figs(&-2(c). Large fluctuation are seen. PV filled symbols and would sometimes jump by a discrete
At some values of the temporal phase difference, the bubbi@mount if the temporal phase is changed. Figure 4 shows
hardly oscillates, as the radius during collapse almost equal§sults for @ bubble of 4.2am ambient radius. Different

the ambient radius. However, a broad plateau exists in thE°!lapse radii as a function of position and phase difference
range of values of the temporal phase, where the bubble &€ shown together with the stability lines. It is seen that the
oscillating violently. The absolute minimum of the collapse c0llapse radius changes along the stability lines. Bjerknes

radius is almost at the same temporal phase for all spatiéd buoyancy forces keep the bubble away from regions
phases. with a very high energetic collapse.

In the multiple stability regime the different bubble posi-
tions are associated with vastly different dynamics. While at
C. Dependence on amplitudes some points the bubble hardly oscillates others show enor-
mous compression ratios needed for sonoluminescence. Also
hown are parametricallysurfacg unstable bubble$18].

The positional stability lines of a bubble in a bimodal
?rg\(;lggngildFi(;i[r)ggdsggvsgethzr?ggltjtljgeoghtgiusrﬁcc())fr}gr?gg%B ubbles driven at these phases/positions will show a dancing
a 4 um bubble and the stability lines at different pressures. ehavior with less radial compression.
While the amplitude of the first harmonic is fixed at 1.4 bars,
the pressure of the second harmonic is varied in four steps
from 0.07 to 0.7 bars. The large oscillations of the stable When the added harmonic’s frequency is a very high mul-
bubble position as a function of the temporal phase are seetiple of the main driving frequency, it is seen that the bubble
Their amplitudes increase with increasing second harmonistill responds to relative phase changes between both driving

D. Very high frequency modes
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FIG. 6. Stable and unstable equilibrium positions of a bubble
undergoing 2f drivingf,=2f; as a function of temporal phase dif-
ference. The second harmonic is a running waespatial mode

The pressures arp;=1.4 bars andp,=0.07 bars. Top: position, (b) 0 120 240Ph 36<[3d ]480 600 720
ase [deg

—100.0

bottom: minimum radius at collapse time. Dashed line denotes
minimum radius with same powerf Hriving; the lower line is van
der Waals hard core.

componentgFig. 5). The second frequency is changedtés g 8 ;
n=10, 20, 40;f=23.4 kHz. Figure 5 shows the Bjerknes and -
buoyancy forces and the stable positions of a bubble with -5
ambient radius of 4um as a function of temporal phase dif- 9

0 120

ference. The spatial phase shift is 0°. Figua Borresponds :
to Fig. @) where two almost symmetric stability lines exist,  (c) 240%03366([’ deg]480 600 720
whose symmetry is broken due to buoyancy. With increasing

order of the added harmonic a change in response is seen: tt 16

phase interval during which the position changes shrinks a 5.8
high frequency. When the 4tharmonic is added to the driv- _ 5

ing, the bubble almost digitally switches between an upperg o 00
and lower position. This may be attributed to the increased ]

interaction of the harmonic with the afterbounce frequency -5 _50.0
which is almost equal to the linear resonance frequency ol _,,

the 4 um bubble[19]. The radial dynamics, i.e., the mini-
mum radius at collapse is not affected by adding very high (q) 0 120 240Ph03366?deg]480 Ry A
harmonics.

L8 8 3

o

3 ° 5 9

° o
[Nu] 0404

[Nu] s0404

FIG. 7. Stable(filled symbolg and unstable equilibrium posi-
tions of a bubble driven by a two-frequency signal as a function of
temporal phase difference. The first harmonic is a standing wave

The position of a bubble in a sound field is not only de- mode. The addedth harmonic is a running wav@o spatial modg
termined by standing waves or spatial modes but also by th&he sum of Bjerknes and buoyancy forces is encoded by a gray
eventually present running waves. In RgZ0] higher har- spale. The pressures gog=1.4 bars ang,,=0.14 bars the frequen-
monics of the driving have been measured; some of therfies areif1=23.4 kHz,f,=nf;, n=2,5,7,10(a-9.
behaved like running waves with no apparent spatial mode.

In Fig. 6 an upward pointing running wave of second har- In Fig. 7 the dependence of the positional changes on the
monic frequency(p=0.07 barkis added to the main driving frequency of the running wave is seen. Bjerknes force, buoy-
componentp=1.4 barg which has a fixed spatial modeq.  ancy force, and stability lines are shown for added frequen-
(3)]. As a function of temporal phase difference large oscil-Cies up to the tenth harmonic. Generally speaking, the am-
lations are seen. Also a region showing a bistable behavidplitudes of the spatial variations decrease with increasing
with an unstable branch of stability lines is s¢saddle-node frequency. The bistable regions, however, increase in the pa-
bifurcation). The bottom part of Fig. 6 shows that the mini- rameter space of the spatial phase.

mum radius at collapse is oscillating near the minimum ra-
dius of a ¥ driving with the same power. Thef 1driven
bubble is located 84.m above the antinode where the sound The results so far are calculated for a bubble with a fixed
pressure is 1.2 Pa less than the maximum. equilibrium radius. In experimental situations, where a

E. Running waves

F. Diffusion and dissociation
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. . . single-frequencydashed lingand biharmonidastraight ling driv-
FIG. 8. Changes of bubble behavior when driven by a blhar'ing of a bubble. The results represent a parametrically, diffusionally,

rcna(ljl;'ca(;jtg)uzﬁ%aléTmhg dee?uf':)':)rg:f?:j ;%?U;Z ég:sgnec?att?ogygfgi; and translationally stable bubble with maximum driving. The same
o . . " parameters as in Fig. 8 have been used, except the single-frequenc
solved air in the water. The saturation level is set to 30%. TheID g P 9 d y

pressures arg;=1.24 bars anch,=0.29 bars, the frequencies are driving pressure that is 1.28 bars. The phase difference of the bi-
=1 p=0. , : PR o : .
f,=23.4 kHz and its second harmonic. Shown @a® to bottor harmonic driving is 112°. The bubble model includes evaporation

bubbl ition(b) i t mai I bient and condensation of water molecules. Shown are the temperature,
@ pubble posi ionb) emperature at main o a_ps@;) amboien ambient radius, bubble wall radius, and driving pressure as a func-
radius,(d) minimum radius at collaps€g) parametric stability asa .. .
: . o tion of time.
function of the phase difference between driving components. Para-

metrically stable bubbles are shown with opaque circles. The . o .
dashed lines show results for single-frequency forcing with ~Whereby it cycles through a process set up by rectified dif-

=1.3 bars, which is the maximal driving pressure for a diffusionally fusion and subsequent microbubble splitoff. In Fig. 8, trans-
and parametrically stable bubble at this saturation level. parent symbols denote results for cycling bubbles just cross-
ing the stability(=1) line.

bubble is levitated in water in which air molecules are dis- Calculations are made for a biharmonic driving of first
solved with a fixed saturation level, the number of moleculesand second harmonic with phase differences from 0 to 180°:
and their individual partial pressures in the bubble will dy-Below 50° and from 160°-180° phase difference a bubble
namically adjust when other parameters are changed. Thdissolves on a slow time scale. From 50°-80° the bubble is
minimal radius, which is a measure for the intensity of arelatively cold[Fig. 8&b)]. It is growing by rectified diffu-
fixed sized bubble’s collapse, is now also a function of thesion, is not able to dissociate much of its contents, and con-
dynamics. To measure the intensity of a collapse, the tentains mostly air. The growth is limited by the parametric
perature within the bubble is calculated. stability threshold. At 90° chemical dissociation of, ldnd

The bubble model is extend¢@l] to include diffusion of O, sets in as seen in the decrease of the ambient r§iigs
dissolved gases in watéN,, O,, Ar) [22], chemical disso- 8(c)]. The two symbols show results for (diffusively un-
ciation of moleculeg16,23, continuous adjustment of the stablg argon bubble developing into the final bubble con-
van der Waals hard core, thermal diffusion by smoothtaining some gas mixture. Bubbles between 110° and 160°
isothermal/adiabatic switching during the compressionhave a hot collapse phase, consist solely of argon, and are
expansion phasgl6], and 1D spatial bubble translation with stable, with the exception of a small island around 125°. The
variable damping according to the Reynold’s number andottest stable bubble is produced by a phase difference of
parametric stabilityf18]. During the calculations a bubble is 120°, where it reaches 21 600 (€¢ompare to 19 200 K for
allowed to dynamically evolve over many cycles into a dif- the monofrequent driving The bubble driven using a phase
fusional and spatial equilibrium starting from specified initial difference in this regime has a consistently hotter collapse as
conditions. when using 1 driving. Also, the Z-driven bubble is bigger

In Fig. 8 the behavior of a bubble in water of a fixed during collapse, leading to a larger radiating volume. These
saturation level of 30% is shown. The dashed line shows thaumerical results can be compared to the experimental re-
values obtained for single-frequency driving at 1.3 bars, thesults in Ref.[5], where the spatial translations, excess light
maximal driving pressure above which the bubble is paraemission, and parametric instabilities are also published.
metrically unstable. The values for the parametric stability A further extension of the moddR1] to include water
are shown in Fig. @). Values exceeding 1 denote an un- vapor evaporation and condensat[@4,2] is leading to the
stable bubble where surface oscillations lead to a breakupesults of Fig. 9. The amplitude of the monofrequent and the
As seen in experimen{d,13], the bubble tends to “dance,” relative phase of the bifrequent driving signal have been cho-
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sen, such that maximum temperature at collapse is attained, All calculations for 4«m ambient radius show results for
whereby maintaining diffusional, translational, and parameta positionally and parametrically stable bubble. As the pa-
ric stability. The maximum temperatures are higher than irrameter space for sonoluminesceii2é] requires the water
the previous calculations, an effect that is due to the largeto be degassed, the low energetic collapses observed in the
extent of the bubble’'s maximum radius obviously compen-diagrams will probably make a bubble disappear due to dif-
sating the temperature lowering effect of a smaller polytropidusion [7]. The diffusion will change the ambient radius of
exponent of the bubble’s interior at collapse. Again, the bi-the bubbles at different drivings. At higher gas levels the
harmonic driving produces a hotter bubkl23 000 K vs ambient radius of a bubble might grow to an extent, where
20 000 K) with a larger radius at collapgeadiating volumg  the bubble will become unstable to surface mode oscilla-
(0.61 um vs 0.57um). The temperature pulse duration is tions. In an experimental situation one has to adjust the am-
slightly longer for the biharmonic driving. bient gas concentration in order to get a stable bubble of a
certain radius. A more complex model also allowing for dif-
fusional changes in the number and type of molecules in a
IV. DISCUSSION bubble is integrated. These calculations for a bubble in de-

Bih ic drivi f bubbl h .  off gassed water with a fixed concentration of dissolved air show
tharmonic drivings of bubbles show a variety of effects. i, e control of the dynamics allows for higher or lesser

While the bubble’s own nonlinearity interacts with the more o, o a4 res at collapse or also removal of bubbles. Sonolu-

complex sound field, as compared to single-frequency drivininescing bubbles can be levitated at specified spots in the
ing, changes in cavitation and sonoluminescence intensit

- ; X ) Yell by micromanipulation due to biharmonic drivings. Tar-
are obsgrved. The position of the bubt_)le adjusts itself in th eting shock waves to drive a bubble may be feasible with
sound field, where the sum of the Bjerknes force and th

, . the method described here.
buoyancy force vanishes. The effects depend on the adjust- ginarmonic excitations might be of use in attempts to

ment of thfe rﬁlagv_e_phas_es blet\\;vvi_eln ﬂ;]e two-f_relquer:jcy COMsontrol cavitation. By careful choice of phase differences a
ponents of the driving signal. While the spatial modes arg;jont collapse can also be inhibited. The injection of a

more or less fixed with a given experimental setup, the temBhase stabilized harmonic can be used for the generation of a

poral phase difference between two harmonics can be easi ultibubble cavitation system, where the destruction of

adjusted. By varying thi_s difference _the pqsitional changes o treamer patterns is possible to reduce metal abrasion and to
the bubble as well as its collapse intensity are controllable

enhance overall cleaning capabilities of acoustic cavitation.

The dependence on a number of parameters has been ShOwly i) hubble growth of microbubbles could be controlled
By increasing the amplitude of the added harmonic, comple y the use of an adapted biharmonic signal.

lines appear in the levitation space as a function of temporal

phase difference. They identify spots where a bubble can be V. CONCLUSION

stably positioned. Unstable zero-force lines appear, where .

the sum of forces is negative but where small disturbances e have shown the effects on spatial and temporal bubble

make the bubble visit other stable regions. Multiple stabilitydynamics when a bubble is driven in a biharmonic sound

lines appear showing that a bubble can be positioned in morfa€!d- The parameter dependences include amplitudes of

than one spot in this sound field. The stable and unstablBigher harmonics, spatial and temporal phase, standing

lines are connected by saddle-node bifurcation points. Als¢/aves/modes and running waves, and the effects of very

disconnected islands appear showing that discrete jumping §f¢n harmonics. The effects of gas diffusion through the

bubbles to different spots in a levitation cell is possible.  Pubble wall, chemical dissociation of gas species, and water
By varying the spatial phase between the magésnding ~ VaPor under parametrical and spatial stability conditions

waves in a one-dimensional levitation setup, it is seen that'ave been shown. The results may serve as a tool for the

as a function of the temporal phase, different levitation lineXPerimental control and micromanipulation of sonolumi-

appear. Regardless of the spatial phase, the most energefi@Scing bubbles and multibubble cavitation.
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